数学

数学

コーシーシュワルツの不等式とは?現役高校生がわかりやすく証明!

コーシーシュワルツは有名不等式の一つで、すべての実数に対して成立する最強不等式です。よく使われるのは『(a^2+b^2)(c^2+d^2)は(ac+bd)^2以上』ですが、一般にはシグマを用いたりベクトルの内積を用いたりして表されます。
数学

『三角形の合同条件』を現役高校生がわかりやすく解説!【中2数学】

こんにちは。フロンティエスタ代表のDaddyです。 今回は、三角形の合同条件というものを扱います。 この分野は数学としては珍しい暗記ゲーです。 とにかく『3つの合同条件を覚える』ことにこだわりましょう。 3つの合同条件 3組の辺がすべて等し...
数学

直角三角形の合同条件はなぜ特殊?現役高校生が3分で解説!

直角三角形の合同条件は『斜辺と1つの鋭角がそれぞれ等しい』『斜辺と他の1辺がそれぞれ等しい』の2つです。斜辺が等しいことが直角三角形の合同条件で最も大切なことで、その条件にもう1つだけ条件が加わるイメージ。三角形の合同条件から証明できます。
数学

f(x)は、関数のニックネーム。3分でわかりやすく解説。

f(x)とは、xを使って表された関数に「f」という名前をつけてみた、という意味です。fはfunction(関数)の頭文字でよく使われますが、他にもgやh、F、Pなど様々です。また、変数がxである必要もなく、f(y)とする問題もあります。
数学

標本調査とは?具体例とともに現役高校生がわかりやすく解説!

標本調査とは、調査の対象となるモノの一部に対してだけ調査を行うことです。調査対象となる母集団の性質を知るため、一部を標本として取り出します。逆に全数調査は、調査の対象となるモノ全てに対して調査を行うことで、標本調査とは明確な違いがあります。
数学

四分位範囲と四分位数を現役高校生がわかりやすく解説!【中2統計】

四分位範囲とは、データの散らばり具合を表すもので、第3四分位数と第1四分位数の差で表されます。ここで、四分位数とは、データを4分割する数です。カンタンに言えば、3種類の中央値が四分位数です。これらの数は、箱ひげ図を作るときに役立ちます。
数学

箱ひげ図ってナニ?読み方からすべて現役高校生が分かりやすく解説!

箱ひげ図は、データの散らばり具合を視覚的に捉えられるようにするために作るものです。箱から2本のひげが出たような図を作成します。箱が四分位範囲を表すため、データの全体的な傾向を掴みやすくなります。外れ値はバツ印またはアスタリスクで表現します。
数学

三平方の定理の逆とは?証明とともに現役高校生がわかりやすく解説!

三平方の定理の逆は、決して当たり前の定理ではありません。超カンタンにいうと、a^2+b^2=c^2が成り立つ三角形は直角三角形である、というものです。三角形の合同条件から証明することが可能で、三角形の形状判別の問題では非常に重要です。
数学

比例式ってナニ?現役高校生がわかりやすく解説!【中1数学】

比例式とは、ズバリ『比で表された等式』のことを言います。4:5=12:15といった式が一例です。中学数学からは、この等式に文字が入ることで、一次方程式の分野で出題されるようになります。ただ、一次方程式に限らず多岐にわたる分野で出題されます。
数学

一次関数の定点公式を現役高校生がわかりやすく解説!【中2数学】

定点公式とは、y-b=m(x-a)で表される1次関数の公式です。ある1点を通る直線の方程式を、切片を求めることなく導出できるのが特徴で、中学校義務教育では習わないものの非常に便利な公式です。グラフの平行移動の考え方から証明できます。